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A B S T R A C T

This paper proposes a new high-efficiency isogeometric topology optimization (HITO), including three part:
multilevel mesh, multigrid conjugate gradient method (MGCG) and local-update strategy, which improves the
efficiency in three aspects: mesh scale reduction, solving acceleration and design variables reduction. Four
benchmark examples are used to evaluate proposed method, and the results show that the proposed HITO
successfully reduces 37%–93% computational time compared to the conventional isogeometric topology opti-
mization (CITO) and obtains consistent optimization results, which demonstrates the high-efficiency of
the HITO. Furthermore, the efficiency improvement of the HITO will be more significant for the large-scale
problems.

1. Introduction

Isogeometric analysis (IGA) [1] combines the basis functions used in
computer-aided design (CAD), such as nonuniform rational B-splines
(NURBSs), with the variational framework of the finite element method
(FEM). Compared to the conventional FEM, the most improvement of
IGA is direct design-to-analysis, meaning the analysis is direct from
computer-aided design (CAD) files without discretization. Furthermore,
the IGA also has advantages in accuracy per degree of freedom (DOF),
partial differential equation (PDE) solving and computational efficiency
of high order elements [2]. With these merits of IGA, IGA has been
successfully applied to a variety of domains, such as beams and shells
[3,4], fluid [5], fluid-solid interaction [6], topology optimization [7,8],
fracture [9] and many other analysis fields [10–12].

Topology optimization (TO) is a mathematical method aiming at
finding the optimal material distribution subjected to some constrains
within a given domain. A series of impressive TO methods have
emerged in the past 30 years, such as homogenization method [13],
solid isotropic material with penalization (SIMP) approach [14–17],

evolutionary approach [18,19], level set method [20–22] and MMC
method [23,24]. In recent years, IGA has been applied in topology
optimization (TO) due to its advantages such as high accuracy and high
continuity. Seo et al. [8] proposed a method for isogeometric TO (ITO)
with the usage of trimmed spline surfaces, while the computational
time for the analysis may significantly increase when the number of
trim curves in a trimmed surface is large. According to work of Dedè
et al. [25], the ITO provides higher accuracy and makes the design
domain can be exactly represented on a phase field model for both 2D
and 3D problems. Kang and Youn [26] applied ITO on shell structures
using trimmed NURBS surfaces, which made the surface curvatures and
the topology of a shell could be optimized effectively. Inherited from
TO, a set of new ITO methods by integrated IGA with different TO
methods (such as level-set [7,27] and MMC [2,28]) have also been
proposed. Wang et al. [29,30] developed an arbitrary geometric con-
strained ITO and accelerated ITO by GPU parallel strategy. Moreover,
using the theory of asymptotic homogenization, an ITO scheme for
lattice materials with both isotropic and anisotropic is proposed by
Wang et al. [31]. More ITO applications can be found in [32–34] and a
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recent review [35].
Although ITO can avoid mesh discretization, the optimization still

costs much computational time duo to the iterative procedure of to-
pological evolution. For engineering problems, the computational
scales of TOs are usually large [36] and continuously growing due to
complex problems with more details in the future. Therefore, pursuing
higher computational efficiency is the eternal objective of TO. Mainly,
there are two types of methods to improve the computational effi-
ciency: one is parallel computing [30,37–40], and the other is the al-
gorithm improvement [41–43]. Apparently, the later one is capable to
fundamentally improve the efficiency of TO so that it will be studied in
this paper. To improve the efficiency of the TO, several aspects can be
worked including convergence acceleration, solution acceleration, and
design variable reduction.

In order to accelerate the convergence rate, a two-stage approach
for TO was presented by Lin and Zhou [44], the optimal result of the
first stage with a coarse mesh was utilized as an initial design for the
second stage with a finer mesh, and the optimized result of the first
stage can accelerate the convergence of second stage, but only two
different mesh sizes are considered in this two-stage approach. To ob-
tain a high accuracy result with less computational cost, Stainko [45]
presented a multilevel scheme that adaptively refined mesh along the
interface between solid and void. Nguyen et al. [46] proposed an effi-
cient multiresolution topology optimization (MTOP) technique, where
a coarser mesh for the finite element analysis (FEA) was used to de-
crease the computational cost and the design variables were separated
from the finite element (FE) mesh with a high resolution. Lieu et al.
[47] combined multi-resolution approach with IGA for the multi-ma-
terial TO problem, obtaining higher-resolution designs with a lower
computational cost. Although the above MTOP approaches can de-
crease the degree of freedom (DOFs) in the FEA with a coarse mesh, but
the accuracy of FEA is sacrificed due to the coarse mesh.

In ITO, it is required to implement IGA (similar to FEA) in each
iteration, and a high-efficiency solution method to solve the equations
of IGA can also reduce the computational cost of ITO. Equation solution
methods are mainly divided into two types: direct methods [48] and
iterative methods [49]. For large-scale problems, the iterative methods
have better performance than direct methods in memory requirements
and computational efficiency [50]. Many iterative methods have been
used to solve TO problem, and one of most effective methods for FE
problems is Preconditioned conjugate-gradients method (PCG) [51].
Amir et al. [52] used a standard PCG solver to terminate the iterative
solution of the nested equations in a short time. Liu and Tovar [53]
presented an efficient 3D TO code using the PCG in Matlab. Further-
more, Amir et al. [54] combined multigrid method and PCG into
multigrid preconditioned conjugate gradients (MGCG), which can re-
duce the solving time of the linear equations for large-scale TOs. For the
large-scale ITO, solving equations costs a large part of computational
time, and thereby it is necessary to utilize an efficient solving method.

The number of design variables is one of the most important factors
determining the computational cost, and Guest and Genut [55] found
that reducing some design variables could reduce the number of
iterations without losing the accuracy compared to that using all design
variables. A reducible design variable method (RDVM) was presented
by Yong et al. [41], which removed some quickly-converge design
variables from iterations to reduce computational cost. Yoo and Lee
[56] presented a variable grouping method which reduced variables
according to histogram of multiplication of sensitivity and density
variable. For large-scale ITO, the design variables will increase to a
huge quantity, which brings many difficulties (e.g., large computational
cost and slow convergence) in optimization. Therefore, reducing some
unimportant design variables using a special strategy will improve the
optimization efficiency.

As a burgeoning method, ITO has been demonstrated some ad-
vantages over conventional TO. Unavoidably, conventional challenges
in TO, such as iterative solution and huge computational cost for large-

scale problems, still exist in ITO. To improve the efficiency of ITO, this
paper presents a new high-efficiency ITO method (HITO), which re-
duces the computational time by three methods: multilevel mesh,
MGCG, and local-update strategy. In the reminder of this paper is or-
ganized as follows: Section 2 introduces the basic theories of ITO. A
detailed model of the proposed high-efficiency ITO method is presented
in Section 3, and the process of algorithm implementation is shown in
Section 4. Section 5 discusses the efficiency improvement of the pro-
posed method by several benchmark examples, and the final conclu-
sions are drawn in Section 6.

2. Theoretical basis

IGA, SIMP-based TO and ITO-SIMP are the theoretical bases of this
paper, which will be summarized in the following sections. For more
detail discussion on IGA, SIMP-base TO and ITO-SIMP, we refer readers
to [1,2,10,14,15,35,57].

2.1. . Basic fundamentals of IGA

In computer-aided design (CAD) and computer graphics (CG), Non-
uniform rational B-splines (NURBS) is the most common representation
for curves and surfaces [58]. The knot vector Ξ= [ξ1,ξ2,…, ξn + p + 1] is
a sequence of non-decreasing real numbers in the parametric space,
where n is the number of control points (also the number of basis
functions) and p is the degree of spline. For the sake of simplicity, the
knot vectors in following contents are open knot vectors in which the
first and last knots have multiplicity p + 1.

The B-spline basis functions Bi,p(ξ) used in the construction of
NURBS can be defined recursively by Cox-de Boor recursion formula
[59]:
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where the convention 0/0 = 0. Fig. 1 gives an example of spline basis
functions constructed by the knot Ξ= [0, 0, 0, 1, 2, 3, 3, 3].

Introducing a positive weight wi to each B-spline basis function, a
univariate NURBS basis function is obtained as

=
=

N
B w

B w
( )

( )
( )

.i p
i p i

j
n

j p j
,

,

1 , (2)

According to the tensor-product property, the two-dimensional (2D)
or high-dimensional NURBS basis functions Ni,p(ξ) are constructed as:
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On the left of Eq. (3), = …[ , , , ]i i i
d1 2
dp

p
1 2

, represents the parametric
coordinate, where = …i i i[ , , ]d1 p , represents the index position in the
tensor product structure, and = …p p p[ , , ]d1 p , indicates the polynomial
degrees for all parameter directions. On the right hand, Ni p,m m is the
univariate B-spline basis functions along the mth parametric direction,
obtained by Eq. (2). dp denotes the dimension of the parameter space,
Ξm={ m

1 , m
2 , m

3 , …, + +n p
m

1m m
} (m = 1, …, dp) are the dp univariate

knot vector, nm indicates the associated number of functions and pm is
the polynomial degree along the parametric direction m.

2.2. . SIMP-based TO

Since the 99-lines Matlab codes for SIMP-based TO was proposed
[14], more and more researches devoted themselves to the TO, and the
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SIMP-based TO becomes the most widespread TO methods in the world.
In the SIMP-based TO, the relation between element density ρe and
Young's modulus Ee is represented as:

= +E E E E( ) ( ) [0, 1],e e min e
s

min e0 (4)

where E0 and Emin are the Young's moduli of standard solid and void
elements, respectively. s is the penalization factor.

2.2.1. . Minimum compliance
For the classic compliance optimization problem, the mathematical

description can be written as follows:
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where c is the compliance, N is the number of the design variables, ρ is
the vector of design variables (i.e. the element densities), K is the global
stiffness matrix, ke is the element stiffness matrix with unit Young's
modulus, U is the global displacement vector, ue is the element dis-
placement vector, F is the global force vector, V(ρ), V0 are the material
volume and design domain volume, and VF is the volume fraction.

The sensitivities of the objective function c and the material volume
V with respect to an element density ρe are calculated as:
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it is worth noting that Eq. (7) is established when each element has unit
volume.

2.2.2. . Compliant mechanism
For the compliant mechanism problem, whose typical goal is to

maximize the output port displacement, the mathematical description
can be written as follows:
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where c is the objective function, uout is the output displacement, ρ is
the vector of design variables (i.e. the element densities). L is a unit
length vector with zeros at all degrees of freedom expect at the output
point where it is one, while Ud is defined as the global adjoint vector. K
is the global stiffness matrix, F is the global force vector, V(ρ), V0 are the
material volume and design domain volume, and VF is the volume
fraction.

The sensitivities of the objective function c with respect to an ele-
ment density ρe are calculated as:

= u k uc s ( ) ,
e

e
s

de
T

e e
1

(9)

where ude is the part of the adjoint vector associated with element e.
To avoid the defects of TO including mesh-dependency, local

minima and checkboard, the filter techniques are usually used in TOs,
and more detail can be found in [15,60]. The TO problems can be
solved by a series of gradient-based methods such as sequential quad-
ratic programming (SQP) [61], the optimality criteria (OC) method
[10] and the method of moving asymptotes (MMA) [62].

2.3. . ITO-SIMP

Different from conventional SIMP, the numerical computations of a
given physical field are calculated at control points in ITO-SIMP.
Therefore, a variable x (e.g., coordinate, force, or displacement) whose
parametric coordinate is ξ can be evaluated from the control point
values

=x N x( ) ( ) ,
i

i i
(10)

where Ni is the basis function of the ith control point influencing the
position of ξ, and xi is the corresponding value of the control point.

In ITO-SIMP, an element stiffness matrix ke can be calculated as:

= =k B DB J B DB J Jd d^ ¯e
T T

^
1

¯
1 2

e e (11)

where B is strain-displacement matrix, D is stress-strain matrix, ^ and ¯
are the domain of the parametric domain in the NURBS parametric
space Ξm and the integration parametric space ¯ m, and J1 and J2 re-
present the transformation relation from the NURBS parametric space
to the physical space and the integration parametric space to the
NURBS parametric space, respectively.

Take the 2D case as an example, the NURBS parametric space is
represented as = … =+ +{ } m, , , , ( 1, 2),m m m m

n p
m

1 2 3 1m m
the

Jacobian J1 is represented as

Fig. 1. An example of spline basis functions.
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and the Jacobian J2 may be written as
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if the mapping from the Gauss quadrature domain [ − 1, 1] to the
NURBS parametric domain ×+ +[ , ) [ , )i i i i

1
1

1 2
1

2 is linear.
When the IGA is used, it is beneficial to replace the design variables

from the element density to the control point density. The element
density is represented by the density at the element center ρn(ic), which
can be calculated by

= =ic N ic( ) ( ) ,
c

e n
j

ij ni
i

ij
(14)

where ρn denotes the control point density, ic represents the center of
the ith element, ci denotes the control point set which influences ele-
ment i, cij is the jth control point of ci, and Nij(ic) is the NURBS basis
function of control point cij corresponding to the center of the ith ele-
ment. Fig. 2 gives an illustration of an element and its corresponding
control points, which is based on a NURBS patch [0, 0, 0, 0.2, 0.4,
0.6, 0.8, 1, 1, 1] × [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1].

According to Eq. (14), the Young's modulus Ee(ρn) is represented as:

= = +E E ic E ic E E( ) ( ( )) ( ) ( ),e n e n min n
s

min0 (15)

where ρn(ic) is a combination of NURBS basis functions at the element
center. The sensitivity of the objective function c with respect to a
control point for minimum compliance cases is written as
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where ni denotes the variable (i.e., density) of the ith control point, ei is
the element set on which the ith control point influences, and eij is the
jth element of ei. For the compliant mechanism, the ue

T
ij should be re-

placed by ude
T

ij . Fig. 3 illustrates the relationship between a control point
and its corresponding elements, which is based on the same NURBS
patch as Fig. 2.

According to Eq. (14), the sensitivity of ei with respect to a design
variable nk is calculated by

= N ic( ).e

n
k

i

k (17)

Based on the above equation, the eij

ni
in Eq. (16) can be obtained.

Due to the ITO-SIMP based on control points, we prefer to NURBS
filter rather than conventional distance-based filter in this work. The
differences between the conventional distance-based filter and NURBS

filter are mainly present in 3 aspects:

(1) Weight function. The weight function of the conventional filter is a
distance based linear hat function controlled by the filter radius, but
that for the NURBS filter is the NURBS basis function with piece-
wise polynomials. In the conventional distance-based filter, the
weight value depends on distance between adjacent density vari-
ables, normally represented based on finite elements, e.g., element
node or element center. In the NURBS filter, the weight value de-
pends on the NURBS basis functions as shown in Eq. (14).

(2) Influence region. Taking the place of conventional axial-symmetric
circular filter region controlled by filter radius, the influence region
of NURBS filter is a rectangle. When the number of knot intervals
increases (i.e., the design resolution increases), the length of knot
interval in physical space decreases. We can enlarge the filtering
region by increasing the order of the NURBS filter, which can be
reflected in the comparison between Figs. 3 and 4.

(3) Resolution constraint. To prevent the numerical instability ap-
pearance such as checkerboard in optimized process, the filter size
should be larger than the element size in the conventional distance-
based filters. As for NURBS filter, the support domain of B-spline
basis functions must contain multiple elements, more details can be
found in [57].

In Eqs. (16) and (17), the NURBS basic functions act as weight
functions, i.e., the sensitivity value is calculated by the spatial average
of the adjacent NURBS basis functions, in which the influence region is
a rectangular region, e.g., the (p1 + 1) × (p2 + 1) knot spans as shown
in Fig. 3. Therefore, we can use different p1 and p2 for IGA computation
and the NURBS filter as long as the NURBS spans keep constant,
meaning that we can adjust the filtering region by increasing/de-
creasing the NURBS order of the filter without changing the NURBS
order of the IGA. Taking Fig. 3 as an example, the influence regions
corresponding to higher order (p1 = p2 = 3) is shown in Fig. 4. It should

Fig. 2. Illustration of the relation between an element i and its control points.
(p1 = p2 = 2).

 

Control point

ie

i

1ie 2ie 3ie

4ie 5ie 6ie

7ie 8ie 9ie

Fig. 3. Illustration of the relation between a control point i and its corre-
sponding elements. (p1 = p2 = 2).

i

 

Fig. 4. Influence region comparison of higher NURBS orders (p1 = p2 = 3)
compared to Fig. 3.
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be noted that the control points of the IGA used in the structural re-
sponse analysis may be different from control points of the NURBS filter
which is associated with the design variables. In the IGA, we just need
the element density to compute the Young's modulus as Eq. (15), and
the element density can be interpolated by the shape functions of the
NURBS filter as Eq. (14), so these two NURBS orders can be different.
With the usage of NURBS filter, the defects of ITO-SIMP including
mesh-dependency, local minima and checkboard can also be solved.

3. Model of high-efficiency isogeometric topology optimization

To reduce the computational cost of ITO, three parts of high-effi-
ciency ITO including multilevel mesh, MGCG and local-update strategy
will be proposed in this section from different aspects.

3.1. . Multilevel mesh approach

To accelerate the convergence rate in ITO, a multilevel mesh
method is proposed, which solves the ITO in a coarse mesh first and
then maps the optimized result to a finer mesh as an initial design, and
this procedure can be repeated for multiple levels to further increase
the efficiency. In ITO-SIMP, the mesh scale determines the number of
design variables (i.e., control-point densities). The relationship between
control point number and mesh scale is shown as follows:

= +
=

n N p( ),
m

d

m m
1

p

(18)

where dp denotes the dimension of the parameter space, pm indicates
the polynomial degrees for mth direction. Nm is the number of elements
for mth direction and n is the total number of control points. Fig. 5 il-
lustrates the positional relation between control points and elements,
which is based on a NURBS patch [0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1,
1] × [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1].

The design variables play an important role during the ITO, the
same as that in conventional TO. Large number of design variables will
result in huge computational cost and bring huge difficulty to solve the
large-scale problems. Therefore, reducing the mesh scale can improve
the efficiency of ITO. On the other hand, if the mesh is too coarse, it is
difficult to obtain an accurate density distribution and a clear
boundary. To balance coarse and fine meshes, multilevel mesh method
provides a better choice.

With mesh from coarse to fine, the multilevel mesh method divides
the ITO process into several levels. Firstly, the ITO is performed on a
coarse mesh with small number of elements, in which the iteration can
converge quickly and occupy only small amount of computational cost.
By refining the mesh, the density field of the coarser mesh can be
mapped to a refined mesh as an initial density field. In terms of the
practical requirement, we can repeat above procedure several times for
multiple levels. The final ITO result is obtained from the finest mesh.

In multilevel mesh method, the computational cost on coarser mesh
only occupies a little part of whole, while the major part is taken by the

computation on the finest mesh. Through multilevel mesh method, the
ITO obtains an initial density field and converges much faster on the
finer meshes, which will reduce significant computational time.

How to inherit the density field from coarser mesh to finer mesh is
the core of multilevel mesh approach. In this work, we use h-refine-
ment, for which the design domain subdivision actually can be regarded
as knot insertion. When the coarse mesh is subdivided into a fine mesh,
which is geometrically and parametrically identical to the original
mesh, and the number of control point increases accordingly. Take
univariate B-spline as example, the original knot vector is

= … + +[ , , , ]n p1 2 1o , whose control point density is = …[ , , , ]n1 2 o ,
the after-subdivision knot vector is = … + +[ ]¯ , , , n̄ p1 2 1a , whose con-
trol point density is = …¯ [ ¯ , ¯ , , ¯ ]n1 2 a , no and na are the number of
control points in original mesh and after-subdivision mesh, respec-
tively. The after-subdivision control point density ¯ is formed from
linear combinations of the original control point density

= T¯ ,p (19)

where Tp is a no × na matrix. For p = 0

= +T 1, ¯ [ , )
0, otherwise

,ij
i j j0 1
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In this paper, an element is halved in each direction, therefore, a 2D
element is subdivided into 4, and a 3D element is divided into 8. In each
direction, uniform meshes are utilized, the new control points are in-
serted in middle of each mesh, and the after-subdivision knot vector is
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The after-subdivision NURBS basis function can be calculated by
Eq. (2). The h-refinement can be performed in each dimension to obtain
new control points, and Eq. (19) is used to obtain the corresponding
control point density distribution for both the 2D and 3D cases. Fig. 6
shows the transformation of NURBS basis function in h-refinement
progress for a 2D case. The flowchart of multilevel mesh algorithm is
shown in Fig. 7.

3.2. . Multigrid conjugate gradient method (MGCG)

To solve the equations in ITO, the MGCG (Multigrid Conjugate
Gradients method) [54,63] which has successfully solved equations of
FEA is utilized in this work to calculate the displacement vector U of
equations KU= F. MGCG is a high-efficiency iterative method to solve
large-scale linear equations, which is essentially a preconditioned
conjugate gradient (PCG) method with the multigrid preconditioner.

3.2.1. Preconditioned conjugate gradient method (PCG)
In IGA, the equations KU= F has similar properties as that of FEA.

Therefore, the coefficient matrix K must be symmetric, positive definite
and sparse. The algorithm of PCG with a preconditioning matrix M to
reduce the total execution time can be described as Table 1.

In Algorithm 1, M is the preconditioning matrix, pi is search direc-
tion vector, ri is the residual vector, and ε is the convergence tolerance

Fig. 5. Illustration of the positional relation between control points and ele-
ments. (p1 = p2 = 2).

Y. Wang, et al. Advances in Engineering Software 139 (2020) 102733

5



(a small value, e.g., 10−6). When the residuals ||ri|| ≤ ε, the iteration
stops. The convergence rate of PCG is given by [54]

+
U U U U 1

1
,K Ki

i

01 1
(23)

where i is the iteration number, κ is the condition number of matrix K. If
κ ≫ 1, the convergence rate will be very slow. Therefore, the multigrid
preconditioner M is utilized in the iterations, which makes κ(M−1K) ≪
κ(K) to improve the convergence rate.

3.2.2. Multigrid (MG) approach
Multigrid (MG) is a multilevel iterative method to solve the linear

system of equations, which divides the grids into different scales and
the exact solution is computed at the coarsest grid corresponding to the
smallest scale. Here we denote the finest level as l = 1, whereas l = L
corresponds to the coarsest level, which is different from the multilevel
mesh approach that l = 1 for the coarsest mesh level. A series of cycling

Fig. 6. The illustration of h-refinement in multilevel mesh method.

Fig. 7. The flowchat of multilevel mesh method.

Table 1
Algorithm implementation for PCG.

Algorithm 1
Input: K, M, F, U0

Step1: Initialization
r0 = F−KU0, z0 =M−1r0

= r zT
0 0 0 , p1 = r0, i = 1

Step2: Circulation calculation
While ||ri|| > ε

w=Kpi; =
p w

i
i

i
T

1

Ui =Ui − 1 + αipi; ri = ri − 1 − αiw
zi =M−1ri; = r zi i

T
i

=i
i

i 1
; pi + 1 = zi + βipi,

i = i + 1.
End while

Output: Ui

Table 2
Algorithm implementation for multigrid V-cycle strategy.

Algorithm 2 MG_V-cycle (F(1),K(1))
Input: F(1),K(1)

Setting the initial guess: U(1) = 0,
For l = 1 to L-1

smooth (K(l), U(l),F(l)),
r(l) = F(l) −K(l)U(l),
F(l + 1) = PTr(l),
K(l + 1) = PTK(l)P,
U(l + 1) = 0.

End for
Solve U(L) = (KL)−1FL

For l = L-1 down to 1
U(l) =U(l) + PU(l + 1),
smooth (K(l), U(l),F(l)).

End for
Output U(1)
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strategies can be used in the MG approach and the V-cycle strategy
[54,64] is the most common one and used in this work. The V-cycle
strategy discretizes the matrix K of equations KU=F into L levels of
resolution, denoted as K(1), K(2),…, K(L), where the finest grid and
coarsest grid are level 1 and level L, respectively. The algorithm im-
plementation of multigrid V-cycle strategy is shown as Table 2:

In Algorithm 2, P is the prolongation operator, mapping the coarse
grid solution to the fine grid. The transpose of the prolongation PT as
the restriction operator, maps the fine grid residual to the coarse grid.
Fig. 8 shows a depiction of multigrid V-cycle strategy, in which L = 3.

The smoothing process, smooth (K(l),Ul,Fl), is typically based on a
stationary iterative method such as Gauss-Seidel or Jacobi, aiming to
reduce the oscillatory error in the solution. The smoothed low order
components can be effectively approximated on a coarser grid since the
smoother removes the high frequency components of the residua. In

this work, we choose Jacobi as smoother, shown as follows:

= +U U S F K U( ),l l l l l( ) ( ) 1 ( ) ( ) ( ) (24)

where S−1 is based on the damped Jacobi method, represented as fol-
lows:

=S D ,1 1 (25)

ω is the damping factor, D is the diagonal of the matrix K(l). More detail
can be found in [64,65].

Fig. 8. The depiction of multigrid V-cycle strategy with 3 levels.

Fig. 9. The boundary moves 1 layer toward outside area (diffused layer number
is 1).

Table 3
Algorithm implementation for design domain division by diffused-layer
number.

Algorithm 3
Choose a diffused layer number Dnum

=n n
original ,

For n
original(n1,n2,n3…nk…)

Find the coordinate nk(i,j, k) of control point nk

Put the control points with the coordinate nc[(i − Dnum): (i + Dnum), ( j − Dnum):
(j + Dnum),( k − Dnum): (k + Dnum)] into Ωn

End for

Fig. 10. The flowchart of the local-update strategy.
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Combined with PCG, MG joins in PCG as a preconditioner, replacing
zi =M−1ri by calling MG_V-cycle(ri,K), which makes MGCG greatly
improve the efficiency of solving large linear equations.

3.3. . Local-update strategy

Local-update strategy, reducing the design variables in each itera-
tion, is the last and the most important efficiency improvement in this
work. In each iteration of conventional ITO, all design variables must be
updated. Referred to [55], it will not bring significant loss in perfor-
mance of solutions but save considerable computational cost by redu-
cing some design variables. Compared to full design variables, reducing
some design variables leads to fewer iterations. To reduce the compu-
tational cost, a local-update strategy is proposed to realize a high-effi-
ciency ITO method.

The core of the local-update strategy is to identify the updated
range. To keep ITO in stabilization and accuracy, the updated range
should include both the solid region and their neighbor region.
Therefore, the key of local-update strategy is to find such regions.

Since ITO-SIMP using the control point density as design variables,
it is easy to define a criterion to divide the design domain into two
subdomains by a threshold density value: (1) the subdomain with

Fig. 11. The flowchart of HITO.

Fig. 12. The cantilever beam benchmark.

Fig. 13. The final structure of CITO.
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control point densities smaller than the threshold density and (2) the
subdomain with control point densities larger than or equal to the
threshold density. In terms of the threshold density, we can extract the
boundaries that separate the subdomains. Only the control points inside
the later subdomain are updated. The math description is as follows:

> n, ,n t n (26)

where ρt is threshold value of control point density, Ωn is the set of
updated control points, and n is the control point ID. The ρt is smaller,
the updated range is bigger. If ρt is equal to 0, all control points will be
updated. Vice versa, ρt is bigger, the updated range is smaller. If ρt is
equal to 1, no control point will be updated.

Besides the threshold density value, another important parameter is
the diffused layer number, which expands the neighbor region to the
outside area. The other advantage of diffused layer is to improve op-
timization accuracy, with more design variables and lower efficiency.
When the diffused layer number is zero, only the control points inside
the red boundary of Fig. 9 are updated. If the diffused layer number is 1,
the boundary will move 1 layer toward outside area, as shown in Fig. 9,
larger diffused layer number means more control points will be in-
cluded in the updated range. The mathematical description is as fol-
lows:

n n i j k( , , ),n c (27)

+
+ +

n n i D i D
j D j D k D k D n

[( ): ( ),
( ): ( ), ( ): ( )] ,

c num num

num num num num n (28)

where Ωn is the set of updated control points, n is the control points ID,
nc(i, j, k) represents the coordinate of control points, and Dnum is the
diffused layer number. For the 2D case, the z-dimension is ignored. The
diffused-layer algorithm implementation is listed in Table 3. It is worth
noting that the index [(i − Dnum): (i + Dnum), ( j − Dnum): (j + Dnum),
( k − Dnum): (k + Dnum)] cannot exceed coordinate matrix dimension.

Furthermore, two approaches are proposed to improve the effi-
ciency of local-update strategy. In conventional ITOs, an approximate
optimal structure can be obtained in a few iterations but the optimi-
zation convergence requires much more iterations. When the structure
stabilizes around a certain shape, it is a good opportunity to start the
local-update strategy. Therefore, when to start the local-update strategy
is of great importance in the ITO problem. The parameter, change, is
utilized as measure of convergence, defined as

= +change ,i i1 (29)

where ρ is the design variable vector, and i denotes the ith iteration. The
value of change general trend to descend when the iteration goes toward
convergence.

Therefore, we define a startup-parameter ST, defined as the
threshold of change, to determine the moment of local-update strategy
startup. When the ITO has obtained an approximate structure, i.e., the
change is smaller than ST, local-update strategy starts to work.

When the volume fraction is small, the control points with small
density occupy most of computational resource but have less influence
on the accuracy of computation and design. The other disadvantage is
the grey elements, which bring difficulties to generate a black-and-
white result in ITO. Thus, it is helpful to reset the small density to the
zero directly under certain conditions. The detail approach is: defining
a small-density threshold ρs, the control point density below the
threshold can be set to zero. This density processing approach has two
significant benefits: one is decreasing grey elements while increase solid
elements, and the other is accelerating the convergence rate. Since the

Fig. 14. The optimization results of each
level: (a) 32 × 16, (b) 64 × 32, (c) 128 × 64.

Table 4
Efficiency comparison between CITO and ITO with multilevel mesh.

CITO Multilevel mesh

Compliance 64.72 64.05
Number of iterations 353 97+15+115
Computational time(s) 169.25 63.47

Fig. 15. The final structures of ITO with ICCG and MGCG in differrent meshes:
(a) ITO with ICCG in 64 × 32 mesh, (b) ITO with MCCG in 64 × 32 mesh, (c)
ITO with ICCG 128 × 64 mesh, (d) ITO with MCCG in 128 × 64 mesh, (e) ITO
with ICCG in 256 × 128 mesh, and (f) ITO with MCCG in 256 × 128 mesh.

Table 5
Efficiency comparison between ITO with ICCG and MGCG in differrent meshes.

case Compliance (ICCG) Compliance (MCCG) Computational time(s) per iteration (IGCG) Computational time(s) per iteration (MGCG)

64 × 32 67.44 67.44 0.22 0.27
128 × 64 64.72 64.72 1.27 1.28
256 × 128 63.59 63.51 8.32 5.70
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volume fraction is constant, when the densities of small-density ele-
ments are set to zero, more material can be allocated to solid domain,
which will make volume of solid domain perfectly match the volume
fraction constraint and increase the accuracy of optimal result. To
guarantee the optimal structure fulfill the volume constraint, the small-
density elements reset only implements before density update process.
It is worth noting that it will result in instable iterations if the small-
density threshold is bigger than (1-VF), where VF is volume fraction.

Based on the above discussion, the flowchart of local-update
strategy is given in Fig. 10:

4. Algorithm implementation

The high-efficiency isogeometric topology optimization (HITO)
using Matlab (Natick, Massachusetts, USA) is developed in this work to
solve the minimum compliance problem and compliant mechanism.
Fig. 11 illustrates the flowchart of the HITO. The sensitivity filter is the
NURBS filter proposed in this work.

Due to multilevel mesh approach is applied, the HITO process can
be divided into several levels, in which the MGCG solves the KU= F for
U and local-update strategy is utilized. To reduce the computational

cost furtherly, the loose convergence criterion can be used on the
coarser mesh levels to reduce the convergence time. It is noted that the
first ITO on initial coarse mesh should be able to obtain the approx-
imate structure, therefore the initial mesh should not be too coarse. The
parameters in local-update strategy of each mesh level can be different,
how to choose the suitable parameter value will be discussed in
Section 5.2. For simplicity, the HITO in this work use the same para-
meters in local-update strategy of every mesh level.

5. Numerical examples

In order to demonstrate the acceleration efficiency of HITO, three
benchmark examples for minimum compliance design and a 3D com-
pliant mechanism example are examined in this section. All examples
are run on a desktop computer with CPU Intel core i7-6700 K of
4.00 GHz, RAM of 16.0GB, and software environment MATLAB.

In Section 5.1, we test a classical cantilever beam to compare the
computation efficiency of HITO with that of a conventional ITO (CITO)
in three aspects consisting of multilevel mesh, MGCG and local update
strategy, and study the accelerated efficiency of HITO on different
meshes. In Section 5.2, we discuss the effect of the local-update strategy
parameters (ST and ρs) through MBB beam. In Section 5.3, a quarter
annulus is utilized to demonstrate the direct design-to-analysis in IGA.
Above 3 examples use the same convergence criterion (the difference of
the design variables between adjacent iterations is smaller than 0.01,
i.e., change < 0.01). In the Section 5.4, a 3D compliant mechanism is
used to demonstrate the HITO also perform well in the 3D case.

Fig. 16. The optimization results of (a) CITO and (b) ITO with local-update strategy.

Table 6
Efficiency comparison between CITO and ITO with local-update strategy.

CITO Local-update strategy

Compliance 64.72 65.70
Number of iterations 353 128
Computational time(s) 169.25 68.36

Fig. 17. The optimization results of CITO and HITO based on different meshes: (a) CITO with 64 × 32, (b) HITO with 64 × 32, (c) CITO with 128 × 64, (d) HITO
with 128 × 64, (e) CITO with 256 × 128, and (f) HITO with 256 × 128.
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5.1. . Cantilever beam

Fig. 12 illustrates the parameter setting of the 2D cantilever beam
benchmark [2], in which the dimension is 2 × 1. An external load F is
applied to the center of the right-end edge, and the left end of the

cantilever beam is clamped.

5.1.1. ITO with multilevel mesh
The design domain is discretized to a mesh of 128 × 64 quadratic

NURBS elements, and the volume fraction (VF) of optimization is set to
0.5. The final structure of conventional ITO (CITO) is shown in Fig. 13.

For the cantilever beam with 128 × 64 elements, it is easy to be
divided into 3 levels in multilevel mesh, the initial mesh is 32 × 16, the
middle mesh is 64 × 32, and the final mesh is 128 × 64. The optimi-
zation results of each level are shown in Fig. 14.

Table 7
Efficiency comparison between CITO and HITO.

case Compliance (CITO) Compliance (HITO) Computational time(s) (CITO) Computational time(s) (HITO) Efficiency value (timeCITO/timeHITO)

64 × 32 67.44 66.66 14.68 9.15 1.60
128 × 64 64.72 64.15 169.25 44.31 3.82
256 × 128 63.71 63.19 2048.00 406.51 5.04

Fig. 18. The design domain and boundary conditions of half MBB beam.

No define  ST

Local-update ITOCITO

STEP 1

STEP 10

STEP 20

STEP 30

STEP 60

FINAL 
STEP

ST=0.15ST=0.10

Intermediate 
steps

ST=0.05

(a) (b) (c) (d) (e)

Misconvergence

75 49144

 

Fig. 19. The intermediate and final optimized structures: (a) for CITO and the rest are local-update ITO with different ST: (b) ST = 0.05, (c) ST = 0.10, (d) ST = 0.15,
(e) no ST.

Table 8
Efficiency comparison between CITO and local-update ITO with different ST.

CITO local-update ITO
ST=0.05 ST=0.10 ST=0.15 Without ST

Compliance 87.07 87.33 87.96 Misconvergence
Number of iterations 144 75 49
Computational time(s) 25.78 10.81 7.78
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Table 4 shows the efficiency comparision between ITO with multi-
level mesh and CITO. It is obvious to find that the computational time
of ITO with multilevel mesh is much less than that of CITO, demon-
strating the advantage of multilevel mesh in efficiency improvement.
For multilevel mesh, the iteration number of each mesh level from
coarse to fine are 97, 15 and 115 respectively, and the final level with
finest mesh occupies a large proportion of computational time. Through
the iterations on the coarser mesh, the optimization on the finer mesh
can convergence quickly, e.g., only 115 iterations for the finest level,
which saves lots of computational time compared to the CITO with 353
iterations.

5.1.2. ITO with multigrid conjugate gradient method (MGCG)
Since MGCG is modified from PCG, this section takes the PCG

method, incomplete Cholesky conjugate gradient method (ICCG) [66-
68] to compare with MGCG. ICCG is a PCG method with the incomplete
Cholesky precondition, which can solve large-scale system of linear
equations efficiently. For the ITO, the design domain is discretized by
three different mesh scales, which respectively consist of 64 × 32,
128 × 64, 256 × 128 quadrilateral elements, and the final structures of
ITO with ICCG and MGCG in differrent meshes are shown in Fig. 15.

Table 5 reports that the ITO with MGCG costs less computational
time in each iteration compared with ICCG when the mesh scale is
large. For this example, it should be noted that ICCG may be more ef-
ficient for small-scale problems such as a mesh of 64 × 32 elements.
With the mesh scale becoming larger, the computational time per
iteration of ITO with MGCG is nearly equal to IGCG in the mesh of
128 × 64 elements, and much smaller than IGCG in the mesh of
256 × 128 elements, meaning the solving speed of MGCG is faster for

such case, which demonstrates the advantages of MGCG for solving
large-scale problems.

5.1.3. ITO with local-update strategy
In the ITO with local-update strategy, the startup-parameter ST is

0.1, the threshold density ρt is 0.5, diffused layer number Dnum is 4. The
control point density below 0.2 are set to zero in each iteration. The
design domain is discretized with 128 × 64 quadratic NURBS elements,
and the volume fraction is 0.5. The final structure is presented in
Fig. 16.

Table 6 represents the efficiency comparison between CITO and ITO
with local-update strategy, which shows that the computational time of
ITO with local-update strategy is less than half of that used in CITO, as
well as a smaller iteration number, demonstrating the high-efficiency of
the local-update strategy. Due to the small-density reset, the final result
of local-update strategy has fewer grey elements and more solid ele-
ments. More discussion about local-update strategy can be found in
Sect. 5.2.

5.1.4. HITO
To further discuss the acceleration efficiency of the method pro-

posed in this work, we have modeled the cantilever beam with meshes
of 64 × 32, 128 × 64, 256 × 128 quadratic NURBS elements, respec-
tively. The volume fraction (VF) of optimization is set to 0.5. The

Fig. 20. The final optimized structures of CITO (a) and local-update ITO with different ρs: (b) ρs= 0.1, (c) ρs= 0.2, (d) ρs = 0.3.

Table 9
Efficiency comparison between CITO and local-update ITO with different ρs.

CITO local-update ITO
ρs= 0.1 ρs= 0.2 ρs= 0.3 ρs> 0.4

Compliance 87.07 87.75 87.82 87.96 Misconvergence
Number of iterations 144 70 57 49
Computational time(s) 25.78 10.88 8.64 7.78

Fig. 21. The results comparison between CITO and local-update ITO at same iteration number.

Fig. 22. The design domain and boundary conditions of quarter annulus.
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comparison between CITO and HITO on difference mesh are shown in
Fig. 17 and Table 7.

From Table 7, we find that the computational time of HITO is
smaller than that of CITO for all cases with different scales. The

efficiency value (timeCITO/timeHITO) from 1.60 to 5.04 represens the
proposed HITO has reduced 37%~80% computational time compared
to CITO, and demonstrates the higher efficiency of HITO. Compared
with the CITO, HITO reduces more computational time when the mesh
scale increases, which shows that HITO has better high-efficiency per-
formance for large-scale problems.

5.2. MBB beam

Fig. 18 shows the half MBB beam, a classical benchmark problem in
TO [10,14]. Due to the symmetry, only half MBB beam is modeled and
symmetry boundary conditions are applied. This case study aims to
discuss the effect of the parameters (ST and ρs) in local-update strategy.

Fig. 23. The control points of quarter annulus with (a) 1 × 1 quadratic NURBS element and (b) 3 × 3 quadratic NURBS elements.

Fig. 24. The final structure of quarter annulus with (a) CITO and (b) HITO.

Fig. 25. The convergence history of quarter annulus with CITO (left) and HITO (right).

Table 10
Efficiency comparison between CITO and ITO with local-update strategy.

CITO HITO

Compliance 82.22 83.90
Number of iterations 2316 153+252+63
Computational time (s) 1346.60 90.02
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5.2.1. Startup-parameter
In ITO, it can be found that the value of change is related to the

convergence stability: a small change value usually means a small
stucture change. The startup-parameter ST, defined as the threshold of
change, aims to start local-update strategy when the optimization ob-
tains an approximate structure. Considering different values of ST, this
section discusses the efficiency of local-update ITO for different cases
and compares them with CITO. Local-update strategy is utilized in the
MBB beam discretized into 64 × 32 elements, where the threshold
value of control point density ρt is 0.5 and the diffused layer number
Dnum is 4. The control point density below 0.3 are set to zero in each
iteration. Fig. 19 shows the intermediate and final optimized structures
corresponding to different values of ST.

Table 8 lists the compliance values, the iteration number and
computational time for the ITOs shown in Fig. 19, where we can con-
clude that a suitable ST is helpful to improve the efficiency of ITO. With
ST increasing, the compliance has a little rise, since the earlier start
momont will make the local-update start based ona higher-compliance
intial structure. If the value of ST is too big, it will lead to instable
iterations and the optimization cannot converge. When ST is not de-
fined, meaning starting local-update strategy at beginning of the ITO,
the optimization cannot obtain an approximate structure. If the value of
ST is too small, the effeciency improvement is non-significant. There-
fore, a suitble ST has positive effect on efficiency improvement, which
plays an important role to reduce the computational time and the
number of iterations.

5.2.2. . Small-density threshold
In Sect. 3.3, the small-density threshold ρs is proposed to further

improve the convergence, which is used to reset the small densities to
zero. This density processing approach has two significant benefits: one
is decreasing grey elements while increasing solid elements, and the
other is accelerating the convergence. Here we will discuss the influ-
ence of the small-density threshold on ITO with local-update strategy.
Three different thresholds are tested for the half MBB beam and the
final optimized structures are shown in Fig. 20, where the startup-
parameter ST is 0.1, other parameters are the same as that in

Section 5.2.1.
Table 9 shows that the number of iterations and computational time

both decrease with the increasing ρs (ρs ≤ 0.3), which demonstrates
that ρs can reduce the computational cost, and the bigger ρs reduces
more computational cost when ρs is in a suitable range. With ρs in-
creasing, the value of compliance also has small rise, this is beacause
the theoretical optimal density distribution may include the small
density, when the ρs increseases, more small density are reset, the
density distribution is more diverged from the theoretical optimum, the
compliance has a little rise. Furthermore, the optimization may not
converge when the small-density threshold ρs is too large, e.g., ρs> 0.4.
The reasons for the misconvergence include: (1) lacking of design
variables, and (2) the volume of elements reset to zero density exceeds
the volume constraint. Therefore, ρs must be assigned in a suitable
range which should be smaller than the volume constraint. Generally,
we recommend ρs to be a value smaller than 0.8*(1-VF) (VF is the vo-
lume fraction).

5.2.3. . The comparison between CITO and local-update ITO at same
iteration number

To further discuss the advantages of local-update strategy, the
comparison between CITO and local-update ITO at same iteration
number is presented.

In this case, local-update strategy is utilized in the MBB beam dis-
cretized into 64 × 32 elements, where the startup-parameter ST is 0.1,
the threshold value of control point density ρt is 0.5 and the diffused
layer number Dnum is 4. The control point density below 0.2 are set to
zero in each iteration. When the change is smaller than ST, local-update
strategy starts, meanwhile defining current iteration number as 0. Using
CITO and local-update ITO to iterate 10 times respectively, the results
of two methods are plotted in Fig. 21.

From Fig. 21, the compliance of local-update ITO decreases more
rapidly than CITO, demonstrating the previous method has the better
performance. The reason for this is that the small density reset can al-
locate more density to the solid domain and reduce the grey elements,
which also accelerates the convergency.

5.3. Quarter annulus

To demonstrate the advantage of the proposed HITO method, i.e.,
direct design-to-analysis, a quarter annulus example with curved
boundaries is utilized, which is shown in Fig. 22. A concentrated force
is horizontally loaded at left-top corner while the bottom edge is fixed.

The control points of quarter annulus with quadratic NURBS ele-
ments on differrent meshes are shown in Fig. 23, where the same

Fig. 26. The design domain and boundary conditions of the 3D compliant
mechanism.

Fig. 27. The final structure of 3D compliant mechanism with CITO (left) and HITO (right).

Table 11
Efficiency comparison between CITO and ITO in 3D compliant mechanism.

CITO HITO

Max displacement −0.1276 −0.1310
Number of iterations 50 40+27
Computational time (s) 581 296
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geometries illustrates that no discretization error exists in the IGA.
In this section, the quarter annulus is discretized into 128 × 64

quadratic NURBS elements, the volume fraction is set to 0.5. The
parameters in HITO is as follows: the design domain is divided into
three mesh scale levels as 32 × 16, 64 × 32 and 128 × 64. The startup-
parameter ST is set to 0.1, the threshold value of control point density ρt
is 0.5, and the diffused layer number Dnum is 4. The control point
densities below 0.2 are set to zero in each iteration. Fig. 24 shows the
final structures of quarter annulus by CITO and HITO. It is noted that
IGA directly uses the exact CAD model and no spatial discretization
error exists, but the visulization here is based on the pixel mesh inter-
polated by the control points that will cause some boundaries looks
non-smooth.

Fig. 25 presents the convergence history of quarter annulus with
CITO and HITO, and the efficiency comparison is shown in Table 10.
From Fig. 25, we can find that the conpliance of CITO and HITO both
tend to decrease during the optimizaiton, and the conpliance of HITO
has an oscillation when the mesh level changes. In Table 10, the
iteration number of each mesh level in HITO from coarse to fine are
153, 252 and 63 respectively, which is much smaller than that of CITO.
Since per iteration time of finest mesh level is much bigger than the
coarser mesh levels and the finest mesh level of HITO only costs 63
iterations, the number of iterations of HITO is much less than 2316 of
CITO. The proposed HITO can reduce 93% computational time com-
pared with CITO, which demonsrate the high-efficiency of HITO. Note
that this curved example is more difficult to converge that other
aforementioned examples with regular design domain, especially for a
high-standard convergence criterion as 0.01. Apart from the element
size and element geometry are different in the curved example, this
convergence difficulty may be also caused by the relationship between
the control point densities and the element densities, for example, each
element density is calculted by interpolating the densities of control
points influencing the element as Eq. (14).

5.4. . 3D compliant mechanism

To further demostrate the high efficiency of HITO, a 3D case of
compliant mechanism is used in this subsection. Compliant mechanism
is a more challenging case, since the design goal is the maximum output
displacement rather than minimum compliance, and the convergence of
compliant mechanism is more difficult. For the 3d compliant me-
chanism case (i.e., the force inverter problem) shown in Fig. 26, the
input load is defined as the positive horizontal direction while the
output is negative. Both the side face and top face are imposed with
symmetric constrains, i.e., nodes can only move within the plane.

In this section, the 3D compliant mechanism is discretized into
40 × 20 × 6 quadratic NURBS elements, the volume fraction is set to

0.3. The parameters in HITO is as follows: the design domain is divided
into two mesh levels as 20 × 10 × 3 and 40 × 20 × 6. The startup-
parameter ST is set to 0.1, the threshold value of control point density ρt
is 0.5, and the diffused layer number Dnum is 2. The control point
densities below 0.3 are set to zero in each iteration. Since it is more
difficult to converge for 3D compliant mechanism than above minimum
compliance problems, to avoid a large number of iterations, a different
convergence criterion is used as that in [69,70],

<= + +

= +

C C
C

( )
,i

N
k i k N i

i
N

k i

1 1 1

1 1 (30)

where C is the objective function value, k is the number of the current
iteration, ε is a preset convergence error set as 0.001, and N is an in-
teger number set as 5.

The final structures of 3D compliant mechanism using CITO and
HITO are presented in Fig. 27, and the efficiency comparison is listed in
Table 11, which indicates the HITO has obtained a greater max-dis-
placement and reduced 49% computational time than the CITO. The
detail of convergence process can be found in Fig. 28. Compared to
CITO, HITO can rapidly converge to an appropriate max-displacement.
The iteration numbers of mesh levels from coarse to fine in HITO are 40
and 27 respectively. Since the coarse mesh has fewer degrees of
freedom, meaning lack of accuracy, the max displacement reaches
overlarge values during the optimization. When the mesh is refined, the
intitial value, inherited from the old optimal result, is not accurate
enough, the max-displacement of HITO has an oscillation. But the in-
itial value is also closed to the high-accuracy final result, which makes
it converge in a short time during the optimization on fine mesh. Apart
from the compliance problem, the HITO also improves the efficiency of
the 3D compliant mechanism, which further demostrates the validity
and efficiency of the proposed HITO.

6. . Conclusions

This paper has proposed a new high-efficiency isogeometric to-
pology optimization method (HITO), which includes three parts: mul-
tilevel mesh for mesh-scale reduction, MGCG (multigrid conjugate
gradient method) for solving acceleration and local-update strategy for
design variables reduction. Four benchmark examples are used to verify
the proposed method. The high-efficiency of HITO and its three accel-
erating parts has been demonstrated in the first example, where the
HITO has reduced 37%~80% computational time compared to the
conventional ITO. Furthermore, as the mesh scale increasing, the effi-
ciency improvement is more significant, representing that the HITO is
especially suitable for large-scale problems. In the second example, we
discuss the effect of the parameters (ST and ρs) in local-update strategy,
which demonstrates that the suitable parameter choice in local-update

Fig. 28. The convergence history of 3D compliant mechanism with CITO and HITO. Each point on the curves represents a iteration result.
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strategy is of importance. Then, a quarter annulus example is utilized to
demonstrate the advantage of IGA, i.e., direct design-to-analysis, in
which no spatial discretization error exists. In this example, HITO has
reduced 93% computational time compared to CITO, demonstrating its
high-efficiency for examples with curved boundaries. Finally, a 3D
compliant mechanism is used to demonstrate the HITO has the uni-
versality for different problems. Although the current work is based on
ITO-SIMP, the HITO can be extended to other ITO methods such as ITO-
level set and ITO-MMC [2,7] or solve other problems [71] and com-
bined with parallel computing techniques for further improving the
efficiency [30,37].
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